

Effect of solar wind speed and IMF fluctuations on activity indices

Tuija I. Pulkkinen, Andrew Dimmock, Adnane Osmane, Reza Naderpour Aalto University, Department of Radio Science and Engineering, Espoo, Finland

Katariina Nykyri Embry Riddle Aeronautical University, Daytona Beach, FL, USA

Solar wind driver functions

Electric field

- Reconnection rate in antiparallel reconnection
- (Burton et al., 1975)

Epsilon

- Incident Poynting flux at magnetopause
- (Akasofu, 1981)

Universal coupling function

- Merging rate at magnetopause
- (Newell et al., 2007)

Parallel E-field

- Electric field along large-scale X-line
- (Pulkkinen et al., 2010)

 $E_Y = -VB_Z$

$$\epsilon = 10^7 l_0^2 V B^2 \sin^4(\frac{\theta}{2})$$

$$\left(\frac{d\phi}{dt}\right)^{3/4} = V B_T^{1/2} \sin^2(\frac{\theta}{2})$$

$$E_{PAR} = VB\sin(\frac{\theta}{2})$$

Solar wind driver functions

Primary driver variables

- Solar wind speed
- Interplanetary magnetic field (IMF) magnitude and orientation

Driver properties

- Separation of variables
 F(**B**, *V*) = **f**(*V*) **g**(**B**)
- Mean + fluctuation term $f(V) = \langle f(V) \rangle + \delta f(V)$ $g(B) = \langle g(B) \rangle + \delta g(B)$

$$E_Y = -VB_Z$$

$$\epsilon = 10^7 l_0^2 V B^2 \sin^4(\frac{\theta}{2})$$

$$\left(\frac{d\phi}{dt}\right)^{3/4} = V B_T^{1/2} \sin^2(\frac{\theta}{2})$$

$$E_{PAR} = V B \sin(\frac{\theta}{2})$$

Higher V produces stronger AL

Themis statistical analysis Shock – magnetosheath coordinate system

Plasma after shock crossing: *Electric field largest at quasi-parallel side*

- Speed reduced at subsolar region
- Magnetic field
 enhanced at
 subsolar region
- Electric field parallel to magnetopause only a fraction of solar wind Ey

Themis statistical analysis

Plasma after shock crossing: *Examine different solar wind V, B -combinations*

	Small E	Intermediate E		Strong E
V _{SW}	< 400	< 400	> 400	> 400
B_{S}	$-2.5 < B_Z < 0$	< -2.5	$-2.5 < B_Z < 0$	< -2.5
	slow V Iow B _s	slow V large B _s	fast V Iow B _s	fast V Iarge B _S

Only negative IMF B_Z observations included

Plasma after shock crossing: *Moderate driver with high V most efficient*

Electric field parallel to magnetopause, scaled by upstream average

Themis statistical analysis

Plasma after shock crossing: *Moderate driver with high V most efficient*

Poynting flux perp to magnetopause, scaled by upstream value

Themis statistical analysis

Scaled Values at the Magnetopause

Higher variability produces higher AL

AL as function of solar wind electric field and speed variance

Plasma after shock crossing: *Magnetosheath perpendicular velocity fluctuations*

Local MHD simulations *Kelvin-Helmholz, instability at magnetopause*

Onset condition for KHI

 $\frac{m_0 n_1 n_2}{n_1 + n_2} \begin{bmatrix} \mathbf{k} & \Delta \mathbf{V} \end{bmatrix}^2 > \frac{1}{0} \quad (\mathbf{k} \quad \mathbf{B}_1)^2 + (\mathbf{k} \quad \mathbf{B}_2)^2$

Aalto University School of Electrical Engineering

(e.g., Nykyri, 2013)

Magnetosheath fluctuations enhance reconnection and plasma transport

Magnetosheath fluctuations change KHI dynamics:

- timing of reconnection onset
- amount of reconnected material

Single mode analysis:

 Pc3-frequency range fluctuations produce plasma transport first

Multi-mode analysis (Pc2-Pc5):

 Non-linear interaction of modes affects KHI dynamics and reconnection timing

Plasma velocity and density

0.15 1.0 1.8 (Nykyri et al., 2014 in preparation)

OMNI statistical analysis: *Wavelet analysis of IMF fluctuations*

Wavelet spectrum power integrated over range of frequencies

- 1-10 min -> ULF power
- 10-30 min -> lower frequency fluctuations

(Naderpour et al., 2014 in preparation)

ULF fluctuations in *B_z* drive higher AL

Wavelet analysis of 1-min OMNI data (Naderpour et al., 2014 in preparation)

Conclusions

- 1. For all driver functions, **higher V produces stronger AL** compared to similar value of driver function but with lower V
- 2. Electric field transport from solar wind to magnetosheath more efficient when **V** is higher -> higher driver at magnetopause
- 3. For all driver functions, **higher level of fluctuations produces stronger AL** compared to similar average with less fluctuations
- 4. ULF waves are especially efficient in driving AL activity
- 5. Magnetosheath fluctuations are larger when V is higher
- 6. ULF waves drive KHI at magnetopause which enhances reconnection and plasma transport -> stronger AL

